What can jumping teach us about muscle growth? Part 1

The mainstream fitness industry is plagued by myths and superstitions about how muscle growth happens, and about how we should structure workouts to maximize gains.

In contrast, the serious bodybuilding and professional strength and conditioning communities are far better educated, and very well grounded in the science of hypertrophy.

Even so, there is still one misconception that creates a barrier for even the most well-read strength coaches and personal trainers: How the degree of motor unit recruitment affects subsequent hypertrophy.

Fortunately, we can fix this problem by comparing the effects of high-velocity strength training programs – such as those that involve jumping or plyometrics – with conventional bodybuilding programs.

But before we get to that, let’s go over the basics of motor unit recruitment…


What is motor unit recruitment?

Motor units are defined as motor neurons and the muscle fibers that they innervate. There are typically hundreds of motor units in any given muscle, but the exact number can vary quite widely between muscles.

When the central nervous system causes an action potential (an electrical signal) to travel along a motor neuron, this “recruits” the motor unit, and causes all of the muscle fibers governed by that motor unit to be activated.

Once muscle fibers are activated, they immediately produce force, and try to shorten as quickly as they can.


How are motor units recruited?

Motor units are recruited in order of motor neuron (not muscle fiber) size, which can be identified by the amplitude of the action potential, because larger motor neurons display large action potentials.

This is called “Henneman’s size principle.”

We can measure the level of force at which individual motor units are recruited during muscular contractions, and this provides a measurement of the recruitment threshold. This threshold is simply the force (in Newtons) or torque (in Newton meters) at which the motor unit is first switched on by the central nervous system.

Motor units that are recruited earlier in sequence, often at relatively lower levels of force, are called “low-threshold motor units” and they govern a small number of muscle fibers. Motor units that are recruited later in sequence, at higher levels of force, are called “high-threshold motor units” and they govern a large number of muscle fibers.


How does motor unit recruitment relate to static force production?

When non-fatigued muscles are able to shorten, as in normal strength training and in most other kinds of movement, the amount of force they can produce is determined by the force-velocity relationship, as well as by the same factors that influence static (isometric) force.

Importantly, we know from studies performed using single muscle fibers that the force-velocity relationship is determined by the fiber itself. When a single fiber shortens slowly, it is capable of producing a high level of force. When a single fiber shortens quickly, it can only exert a low level of force.

The force-velocity relationship inside a muscle fiber is determined by the number of actin-myosin crossbridges that are attached at any one time, because the actin-myosin crossbridge is the engine that produces force. When muscle fibers shorten slowly, they can form many simultaneous crossbridges, but when they shorten quickly they can only form a fraction of this number of crossbridges at the same time. This is because the detachment rate of myosin motors from actin filaments is lower at slower velocities.

This means that the faster we try and move, the less force each individual muscle fiber can produce, to contribute to total muscle force.

To compensate for this, the central nervous system accelerates the rate at which motor units are recruited, as movement speed increases, which increases the number of activated muscle fibers. This means that the recruitment threshold (force level) at which any given motor unit is switched on is *lower* in a slow contraction than in a fast contraction.

In fact, the recruitment threshold of a motor unit in fast movements can be just 10–30% of the force level required to recruit the same motor unit in a static (isometric) contraction. In practice, extremely high levels of motor unit recruitment can be reached with light loads and fast bar speeds, which is why plyometrics increase voluntary activation levels after training.


How does motor unit recruitment change with fatigue?

When muscles experience fatigue at the same time as they are producing force, the amount of force they can produce is determined by the level of fatigue, as well as by the same factors that influence dynamic force.

Although the ways in which fatigue leads to a reduction in force are highly complex, the underlying mechanism by which fatigue affects force production is a reduction in the ability of the single muscle fibers to produce force. So in this way, fatigue affects muscle force in a similar way to the force-velocity relationship.

To compensate for the reduced amount of force produced by each (fatigued) muscle fiber governed by low-threshold motor units, the central nervous system recruits high-threshold motor units.

This means that the recruitment threshold (force level) at which any given motor unit is switched on is *lower* when fatigue is present than when fatigue is not present. In fact, computer models of the effects of fatigue on motor unit recruitment suggest that very high levels of recruitment can be achieved even with quite low forces, just like they can in high-velocity movements.


How does motor unit recruitment during strength training stimulate muscle growth?

Until recently, it was believed that we needed to lift heavy weights to achieve muscle growth.

Over the last decade, it has become increasingly clear that this is not the case. In fact, similar muscle growth is achievable with light and heavy loads, so long as the sets with light loads are performed to muscular failure, which involves a high level of fatigue.

In studies comparing the effects of heavy and light loads, you will often read researchers suggesting that the mechanism by which muscle growth occurs is a high level of motor unit recruitment. After all, when lifting heavy weights, the level of motor unit recruitment is high because there is a need to produce a high level of force, while when lifting light weights to failure, there is a need to recruit high-threshold motor units to compensate for the reduced force produced by each muscle fiber governed by the low-threshold motor units.

Unfortunately, we can see by looking at high-velocity movements like jumping that this explanation cannot possibly be correct. Although fast movements involve extremely high levels of motor unit recruitment, long-term research into the adaptations produced by jumping reveal that it causes little or no muscle growth.

All three training methods (heavy loads, light loads at fast speeds, and light loads under fatiguing conditions) involve very high levels of motor unit recruitment, and yet only two of these methods lead to meaningful muscle growth (heavy loads and light loads under fatiguing conditions).

Clearly, reaching a high degree of motor unit recruitment is not *sufficient* for producing the necessary stimulus that leads to hypertrophy. As we can see by this comparison, a slow muscle shortening velocity is *also* required.


Time under tension

Some people have argued that the factor that prevents high-velocity strength training from stimulating muscle growth is a short length of time under tension (and not a fast muscle shortening velocity), because such movements are completed very quickly. However, if time under tension were the key factor, instead of muscle shortening velocity, then we would be able to achieve meaningful hypertrophy by doing a large number of jumps with long rest periods between them, over the course of a whole day. If you really do think that this training approach would accomplish large muscle gains, feel free to ignore everything that follows).


How does muscle-shortening velocity during strength training stimulate muscle growth?

As I explained earlier, similar muscle growth is achievable after strength training with light or heavy loads, so long as the sets with light loads are performed to muscular failure, which involves a high level of fatigue. In contrast, muscle growth is very limited after high-velocity strength training with light loads.

This tells us that even when muscle fibers are activated, they still need to shorten at a slow speed in order for them to be stimulated to grow.

Clearly, heavy loads cause muscle fibers to shorten at a slow speed because of the force-velocity relationship. In order to produce the required amount of force to lift a heavy load, the fibers cannot do anything other than contract slowly. The slow contraction velocity allows a greater number of actin-myosin crossbridges to be attached at any one time, and the actin-myosin crossbridge is the engine that produces force.

This higher level of muscle fiber force that is permitted by a slow contraction velocity is detected as mechanical tension by mechanoreceptors on the muscle cell membrane. This triggers the molecular signaling cascades that lead to elevated muscle protein synthesis, and causes an increase in the protein content of the muscle fiber, which we record as hypertrophy.

Similarly, strength training with light loads to failure causes muscle fibers to shorten at a slower speed because of accumulated metabolic stress. This is reflected in a fairly similar pattern in the reduction in bar speed, which reaches the same velocity regardless of the relative load used.

As the set progresses, and new, higher threshold motor units are recruited, their muscle fibers contract slowly, and the slow contraction velocity allows a large number of simultaneous actin-myosin crossbridges to be attached at any one time, which produces a high level of muscle fiber force. This force is detected as mechanical tension by mechanoreceptors on the muscle cell membrane, triggering molecular signaling cascades, increasing muscle protein synthesis rates, and producing increases in muscle fiber size.


Slow tempos

Some people have suggested that slowing down the tempo during strength training with light loads should increase muscle growth, because it increases the mechanical tension on the working muscle fibers. While this is true, the slow bar speed also dramatically increases the motor unit recruitment threshold, meaning that the high-threshold motor units that are the ones that increase most in size after training are not recruited, which is probably why most long-term studies report that tempo has little effect on hypertrophy. It seems likely that light load strength training does not stimulate muscle growth until fatigue begins to cause increased motor unit recruitment, at which point it reduces muscle shortening velocity as well.


For more info on products mentioned in this article or for info on current product specials, please contact your personal ELIVATE Account Manager.

If you don’t know who your Account Manager is, please call 800.537.5512 to find out.

Recommended Products from ELIVATE